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Abstract

This article, examines the vibrational characteristics of annular plates by using the three-dimensional elasticity

theory. It aims to raise the quality of the investigation beyond that provided by the two-dimensional plate theories by

resorting to a full three-dimensional analysis. A polynomials±Ritz model based on sets of orthogonally generated

polynomial functions to approximate the spatial displacements of the plates in cylindrical polar coordinates is pre-

sented. The model is then used to extract the full vibration spectrum of natural frequencies and mode shapes. The

vibration responses due to the variations of boundary conditions and thickness are investigated. Frequency parameters

and three-dimensional deformed mode shapes are presented in vivid graphical forms. The accuracy of the method is

validated through appropriate convergence and comparison studies. Ó 2000 Published by Elsevier Science Ltd.
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1. Introduction

Plates are customarily used as structural components in various engineering applications. They can be
analysed based on two-dimensional theories, such as the classical plate theory (CPT), the ®rst-order shear
deformable plate theory, and the higher-order shear deformable plate theory (Liew et al., 1995a). Although
adequate for many engineering applications for su�ciently thin plates, much of what has been done in free
vibration analysis of annular plates based on the CPT has certain limitations due to the Kirchho� hy-
pothesis (Leissa, 1969; Kim and Dickinson, 1989; Liew, 1993). The CPT neglects the e�ects of transverse
shear deformation and rotary inertia, leading to overestimation of the vibration frequencies. The error
increases with increasing plate thickness. To re®ne CPT by including the shear e�ect in the analysis of thick
plates, various shear deformation theories have been proposed during the past few decades. The ®rst paper
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that appeared in the literature for free vibration analysis of circular plates with the inclusion of shear and
rotary inertia e�ects was due to Deresiewicz and Mindlin (1955). This work was further extended by Irie et
al. (1982) for annular Mindlin plates with nine di�erent combinations of free, simply supported and
clamped boundary conditions. Vibration analysis of annular Mindlin plates continuous over multiple in-
ternal ring supports was recently considered by Liew et al. (1993a).

The two-dimensional theories o�er a relatively simple mathematical manipulation in analytical or
computational implementations (Nosier et al., 1993). They reduce the dimensions of the plate problem (and
thus the determinant size of the eigenvalue equation) from three to two by addressing the quantities of
interest, such as membrane forces, bending moments and shear forces, in terms of certain averages over the
displacement across the smaller dimension, i.e., the thickness. These simpli®cations are inherently erro-
neous, and therefore may lead to unreliable results for relatively thick plates. Srinivas and Rao (1970)
pointed out that the Mindlin plate theory fails to predict a full vibration spectrum for a much thicker simply
supported rectangular plate. A similar conclusion was also drawn for thick rectangular plates with other
combinations of boundary conditions (Liew et al., 1993b).

The available three-dimensional elasticity solutions for free vibrations of plates are very limited.
Three-dimensional elasticity solutions are important because they form a real basis for assessing the
results of the two-dimensional theories. Publications on three-dimensional vibration of annular plates,
if available, are very limited. This apparent void has thus formed the motivation of the present work. To
obtain the solutions for this problem, two computational models could be developed. The ®rst model
can be formulated in a Cartesian coordinate system that allows the geometry to be described in a
cylindrical coordinate system (Liew and Hung, 1995; Liew et al., 1995b). The second model can be
developed based on the cylindrical polar coordinate system. It is expedient to use cylindrical polar
coordinates when dealing with annular plates with three-dimensional ¯exibility. Therefore, in this paper,
we adopt the cylindrical polar coordinate system to derive a three-dimensional model (Liew and Yang,
1999), which is applicable to annular plates with di�erent combinations of inner and outer edge
boundary conditions.

This article is organized as follows: Section 2 outlines the formulations of the plate strain and kinetic
energies in the cylindrical polar coordinate system and the solution method using orthogonal polynomials.
Section 3 presents the results of several plate problems obtained from the proposed method, and also the
convergence and comparison studies. Section 4 concludes the present investigation.

2. Mathematical formulation

The geometric con®guration of a homogeneous isotropic annular plate of constant thickness h is de-
picted in Fig. 1. The plate geometry and dimensions are de®ned by a cylindrical polar coordinate system
�r; h; z�. The corresponding displacement components at a generic point are u1; u2 and u3 in the radial,
circumferential and thickness directions, respectively. The plate inner and outer radii are denoted by ri and
ro. The natural frequencies and mode shapes of this plate are to be determined from a Ritz three-dimen-
sional displacement-based polynomials method.

2.1. Elastic strain and kinetic energy expressions

The linear elastic strain energy component V for a plate in cylindrical polar coordinates can be written in
an integral form as

V � E
2�1� m��1ÿ 2m�

Z ro

ri

Z 2p

0

Z h=2

ÿh=2

A2
1

�
� �1ÿ 2m� A2

�
� 1

2
A3

��
r dr dhdz; �1�
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where

A1 � err � ehh � ezz; �2�

A2 � e2
rr � e2

hh � e2
zz; �3�

A3 � e2
rh � e2

rz � e2
hz: �4�

E is the YoungÕs modulus, m, the Poisson ratio, and the strain components in cylindrical polar coordinate
for small deformation are given as

err � ou1

or
; ehh � u1

r
� ou2

roh
; ezz � ou3

oz
; �5�

erh � ou1

roh
� ou2

or
ÿ u2

r
; erz � ou1

oz
� ou3

or
; �6�

ehz � ou2

oz
� ou3

roh
: �7�

For free vibration analysis, the kinetic energy can be expressed as

T � q
2

Z ro

ri

Z 2p

0

Z h=2

ÿh=2

ou1

ot

� �2
"

� ou2

ot

� �2

� ou3

ot

� �2
#

r dr dhdz; �8�

where q is the mass density per unit volume.

Fig. 1. Geometry and dimensions of an annular plate in cylindrical coordinate system.
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For linear small-strain simple harmonic motion, the displacement components assume the following
forms:

ua�r; h; z; t� � Ua�r; h; z�eixt; a � 1; 2; 3; �9�
where x denotes the frequency of vibration.

For simplicity and convenience in the mathematical formulation, the cylindrical polar coordinates
�r; h; z� are transformed to a set of nondimensional parameters ��x1;�x2;�x3� by the following relations:

�x1 � r
ro

; �x2 � h; �x3 � z
h
: �10�

The displacement amplitude functions, Ua�r; h; z�; a � 1; 2; 3; are expanded into Fourier components
in terms of the circumferential coordinate

Ua��x1;�x2;�x3� �
XM

m�1

XN

n�1

Ca
mn/

a
m��x1�wa

n��x3�#a��x2� a � 1; 2; 3 �11�

in which Ca
mn are the unknown coe�cients, and /a

m��x1� and wa
n��x3� are the one-dimensional polynomials

approximating the radial and thickness variations of each displacement component in cylindrical coordi-
nates. In Eq. (11), the function #a��x2� is given by

#a��x2� � sin��n�x2� if a � 2;
cos��n�x2� if a � 1 and 3 :

�
�12�

The variable �n in the above expression denotes the number of circumferential nodal diameters in the
vibration mode. The following relations are used for evaluating the energy expressions of the annular
plate:Z 2p

0

sin 2 �n�x2 dx2 � 0; when �n � 0;
p; when �n > 0;

�
�13�

Z 2p

0

cos2 �n�x2 dx2 � 2p; when �n � 0;
p; when �n > 0:

�
�14�

2.2. Ritz displacement functions

In order to apply the Ritz method, it is essential that the assumed displacement functions satisfy the
geometric boundary conditions of the plate. The inner and outer peripheries of the annular plate are
uniquely characterized by basic radial functions /a

1��x1� in each of the displacement amplitude functions.
The general form of this function is

/a
1��x1� � ��x1 ÿ f�Xa

1��x1 ÿ 1�Xa
2 ; �15�

where f � ri=ro (inner-to-outer radius ratio).
The appropriate values for assigning to Xa

� for di�erent boundary conditions are given as follows:
(a) Free edge (F ): X1

� � X2
� � X3

� � 0;

(b) Soft simple support (S�): X1
� � X2

� � 0; X3
� � 1;

(c) Hard simple support (S ): X1
� � 0; X2

� � X3
� � 1;

(d) Clamped edge (C ): X1
� � X2

� � X3
� � 1

in which �� 1, denotes the inner edge and � � 2 the outer edge.
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For the antisymmetric thickness modes, the basic functions wa
1��x3� are

w1
1��x3� � �x3; w2

1��x3� � �x3; w3
1��x3� � 1; �16�

and for the symmetric thickness modes, the basic functions wa
1��x3� take on the following values:

w1
1��x3� � 1; w2

1��x3� � 1; w3
1��x3� � �x3: �17�

These sets of thickness variation functions satisfy the stress free requirement at the top and bottom surfaces
of the plate at each thickness symmetry mode.

The higher-order polynomial functions for both radial functions /�k ��x1� and thickness functions w�k ��x3�
are constructed according to a recurrence formula. For Pk�x� 2 /�k ;w

�
k ; � � 1; 2; 3

� 	
, the recurrence

process gives

Pk�1�x� � fg�x� ÿHA
k gPk�x� ÿHB

k Pkÿ1�x�; k � 1; 2; 3; . . . ; �18�
where

g�x� � �x1; if x � �x1;
�x3; if x � �x3:

�
�19�

In Eq. (18), the polynomial P0�x� is de®ned as zero, and the constants HA
k and HB

k are de®ned such that
the set of polynomials generated maintain the orthogonality property:Z L

0

Pj�x�Pk�x�dx � djk �20�

in which djk is the Kronecker delta.
From the recurrence relation of Eq. (18) and considering Eq. (20), we have

HA
k � 3Dk

4Dk
; �21�

HB
k � 4Dk

5Dkÿ1

�22�

with

3Dk �
Z L

0

g�x�P 2
k �x�dx; �23�

4Dk �
Z L

0

P 2
k �x�dx; �24�

5Dkÿ1 �
Z L

0

P 2
kÿ1�x�dx: �25�

2.3. Formation of the eigenvalue matrix

Let P be the energy functional given by

P � Vmax ÿ Tmax; �26�
where Vmax and Tmax are the maximum strain and kinetic energies of a plate which are derived by sub-
stituting Eq. (9) into the respective energy expressions (1) and (8) with the periodic component eixt elimi-
nated.
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The minimization of the functional in Eq. (26) with respect to the coe�cients

oP

oCa
mn

� 0; a � 1; 2; 3 �27�

leading to the governing eigenvalue equation of the form

�Kÿ k̂2M�C � 0; �28�
where

K �
k11 k12 k13

k22 k23

sym k33

24 35; �29�

M �
m11 0 0

m22 0
sym m33

24 35; �30�

C �
C1

C2

C3

8<:
9=;; �31�

and k̂ � xro

���������
q=E

p
:

The explicit form of the respective elements in the sti�ness submatrices kab are given by:

k11
mjnk �

�1ÿ m�S1

K1

Z 1

f
�x1

d/1
m

d�x1

d/1
j

d�x1

d�x1

(
�
Z 1

f
�xÿ1

1 /1
m/1

j d�x1

)
R00

nk

ÿ �
11

� mS1

K1

Z 1

f
/1

m

d/1
j

d�x1

d�x1

(
�
Z 1

f

d/1
m

d�x1

/1
j d�x1

)
R00

nk

ÿ �
11

� 1

K2

S1

Z 1

f
�x1/

1
m/1

j d�x1

� �
R11

nk

ÿ �
11

�
� S2�n2

Z 1

f
�xÿ1

1 /1
m/1

j d�x1

� �
R00

nk

ÿ �
11

�
; �32�

k12
mjnk �

�1ÿ m�S1�n
K1

Z 1

f
�xÿ1

1 /1
m/2

j d�x1

(
� �1ÿ 2m�
�1ÿ m�

Z 1

f
/1

m

d/2
j

d�x1

d�x1

)
R00

nk

ÿ �
12

� S2�n
K2

Z 1

f
�xÿ1

1 /1
m/2

j d�x1

�
ÿ
Z 1

f

d/1
m

d�x1

/2
j d�x1

�
R00

nk

ÿ �
12
; �33�

k13
mjnk �

S1

K1

Z 1

f
�x1

d/1
m

d�x1

/3
j d�x1

�
�
Z 1

f
/1

m/3
j d�x1

�
R01

nk

ÿ �
13
� S1

K2

Z 1

f
�x1/

1
m

d/3
j

d�x1

d�x1

( )
R10

nk

ÿ �
13
; �34�

k22
mjnk �

�1ÿ m�S1�n2

K1

Z 1

f
�xÿ1

1 /2
m/2

j d�x1

� �
�R00

nk�22

� S2

K2

Z 1

f
�xÿ1

1 /2
m/2

j d�x1

�
ÿ
Z 1

f

d/2
m

d�x1

/2
j d�x1

�
�R00

nk�22

ÿ S2

K2

Z 1

f
/2

m

d/2
j

d�x1

d�x1

(
�
Z 1

f
�x1

d/2
m

d�x1

d/2
j

d�x1

d�x1

)
�R00

nk�22 �
S2

K2

Z 1

f
�x1/

2
m/2

j d�x1

� �
R11

nk

ÿ �
22
; �35�
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k23
mjnk �

S1�n
K1

Z 1

f
/2

m/3
j d�x1

� �
�R01

nk�23 ÿ
S2�n
K2

Z 1

f
/2

m/3
j d�x1

� �
R10

nk

ÿ �
23
; �36�

k33
mjnk �

�1ÿ m�S1

K1

Z 1

f
�x1/

3
m/3

j d�x1

� �
�R11

nk�33

� 1

K2

S1

Z 1

f
�x1/

3
m/3

j d�x1

�
� S2�n2

Z 1

f
�xÿ1

1 /3
m/3

j d�x1

�
R00

nk

ÿ �
33

�37�

and the elements in the mass submatrices mab are given by

m11
mjnk � S1

Z 1

f
�x1/

1
m/1

j d�x1

� �
R00

nk

ÿ �
11
; �38�

m22
mjnk � S1

Z 1

f
�x1/

2
m/2

j d�x1

� �
R00

nk

ÿ �
22
; �39�

m33
mjnk � S1

Z 1

f
�x1/

3
m/3

j d�x1

� �
R00

nk

ÿ �
33
; �40�

where

K1 � �1ÿ 2m�K2; �41�

K2 � �1� m�; �42�

Rrs
nk

ÿ �
ab
�
Z 1=2

ÿ1=2

orwa
n��x3�

o�xr
3

oswb
k��x3�

o�xs
3

d�x3 �43�

in which

ha; bi � h1; 2; 3; 1; 2; 3i: �44�
The scalars S1 and S2 are de®ned as

S1 � 2 when �n � 0;
1 when �n > 0;

�
�45�

and

S2 � 0 when �n � 0;
1 when �n > 0:

�
�46�

To be consistent with the frequency parameter generally de®ned in the literature, the eigenvalue in Eq.
(28) is nondimensionalized to the following form:

k � xr2
o

2p

������
qh
D

r
; �47�

where D is the ¯exural rigidity of the plate.
For the special case in which the mode shape does not possess any nodal diameter ��n � 0�, the eigenvalue

equation can be reduced to the following form which governs only the axisymmetric ��n � 0� vibration
modes of the plate
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�Kÿ k̂2M�C � 0; �48�
where

K � k11 k13

sym k33

� �
; �49�

M � m11 0

sym m33

� �
; �50�

C � C1

C3

� �
�51�

in which the terms in Eq. (51) are determined by setting �n � 0.

3. Results and discussion

The above procedure is applied to compute the natural frequencies and mode shapes of annular plates
with various combinations of boundary conditions, relative thickness ratio h=ro and cutout ratio ri=ro. Two
example plate problems are considered: (a) an annular plate with a free inner edge but the outer edge is
subjected to either a free, simply supported or clamped boundary condition, and (b) an annular plate with a
restrained inner edge and where the outer edge is subjected to either a free, simply supported or clamped

Table 1

Convergence of the ®rst eight frequency parameters for annular plates with di�erent boundary conditions (ri=ro � 0:30 and

h=ro � 0:20)

Terms Mode sequence number (�n; �s)

M � N 1 2 3 4 5 6 7 8

(a) An annular plate with hard simply supported outer edge and free inner edge (S±F)

5� 4 4.5427 (0,0) 11.250 (1,0) 12.750 (1,0)a 15.936 (2,0)a 20.854 (2,0) 27.942 (0,0)a 30.774 (0,1) 31.549 (3,0)

5� 5 4.5427 (0,0) 11.250 (1,0) 12.750 (1,0)a 15.936 (2,0)a 20.854 (2,0) 27.942 (0,0)a 30.774 (0,1) 31.549 (3,0)

6� 4 4.5408 (0,0) 11.243 (1,0) 12.745 (1,0)a 15.918 (2,0)a 20.853 (2,0) 27.933 (0,0)a 30.710 (0,1) 31.544 (3,0)

7� 4 4.5405 (0,0) 11.240 (1,0) 12.743 (1,0)a 15.907 (2,0)a 20.852 (2,0) 27.932 (0,0)a 30.709 (0,1) 31.543 (3,0)

8� 4 4.5402 (0,0) 11.240 (1,0) 12.742 (1,0)a 15.905 (2,0)a 20.852 (2,0) 27.931 (0,0)a 30.709 (0,1) 31.543 (3,0)

9� 4 4.5401 (0,0) 11.240 (1,0) 12.742 (1,0)a 15.904 (2,0)a 20.852 (2,0) 27.931 (0,0)a 30.709 (0,1) 31.543 (3,0)

(b) An annular plate with both outer and inner edges free (F±F)

5� 4 4.6360 (2,0) 7.8983 (0,1) 11.170 (3,0) 15.279 (1,1) 15.711 (2,0)a 18.862 (4,0) 26.895 (2,1) 27.429 (5,0)

5� 5 4.6360 (2,0) 7.8983 (0,1) 11.170 (3,0) 15.279 (1,1) 15.711 (2,0)a 18.862 (4,0) 26.895 (2,1) 27.429 (5,0)

6� 4 4.6219 (2,0) 7.8942 (0,1) 11.146 (3,0) 15.201 (1,1) 15.673 (2,0)a 18.830 (4,0) 26.814 (2,1) 27.387 (5,0)

7� 4 4.6208 (2,0) 7.8939 (0,1) 11.145 (3,0) 15.192 (1,1) 15.664 (2,0)a 18.828 (4,0) 26.812 (2,1) 27.380 (5,0)

8� 4 4.6200 (2,0) 7.8939 (0,1) 11.144 (3,0) 15.189 (1,1) 15.662 (2,0)a 18.826 (4,0) 26.810 (2,1) 27.378 (5,0)

9� 4 4.6198 (2,0) 7.8939 (0,1) 11.143 (3,0) 15.189 (1,1) 15.662 (2,0)a 18.826 (4,0) 26.810 (2,1) 27.378 (5,0)

(c) An annular plate with clamped outer edge and free inner edge (C±F)

5� 4 10.480 (0,0) 16.072 (1,0) 25.699 (2,0) 36.278 (3,0) 37.441 (0,1) 39.635 (1,0)a 40.939 (1,1) 44.118 (2,0)a

5� 5 10.480 (0,0) 16.072 (1,0) 25.699 (2,0) 36.278 (3,0) 37.441 (0,1) 39.635 (1,0)a 40.939 (1,1) 44.118 (2,0)a

6� 4 10.463 (0,0) 16.044 (1,0) 25.673 (2,0) 36.244 (3,0) 37.396 (0,1) 39.618 (1,0)a 40.854 (1,1) 44.099 (2,0)a

7� 4 10.454 (0,0) 16.031 (1,0) 25.659 (2,0) 36.228 (3,0) 37.360 (0,1) 39.609 (1,0)a 40.827 (1,1) 44.086 (2,0)a

8� 4 10.448 (0,0) 16.027 (1,0) 25.651 (2,0) 36.221 (3,0) 37.348 (0,1) 39.603 (1,0)a 40.810 (1,1) 44.080 (2,0)a

9� 4 10.448 (0,0) 16.026 (1,0) 25.650 (2,0) 36.220 (3,0) 37.346 (0,1) 39.602 (1,0)a 40.809 (1,1) 44.080 (2,0)a

a Denotes symmetric thickness mode.
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boundary condition. The following section presents the accuracy of the method by checking the conver-
gence and comparing it with existing results and ®nite element solutions, followed by a parametric study.
The ®rst known vibration frequencies and mode shapes for selected annular plates are also presented for
both cases.

Table 2

Comparison of frequency parameters for annular plates with free inner edge and various restrained outer edges (antisymmetric

thickness modes)

h=ro ri=ro Source of

results

Mode typesa

(0,1) (0,2) (1,1) (1,2) (2,1) (2,2)

(a) Annular plates with free inner and outer edges (F±F)

0.10 0.10 FSDTb 8.65 35.95 19.56 52.90 5.21 32.69

Authors 8.6518 36.036 19.596 53.148 5.2105 32.786

0.30 FSDTb 8.23 46.63 17.02 52.50 4.80 30.77

Authors 8.2291 46.73 17.063 52.693 4.7996 30.842

0.50 FSDTb 9.10 81.03 15.76 83.48 4.17 28.05

Authors 9.1036 81.306 15.783 83.770 4.1730 28.085

0.30 0.10 FSDTb 7.83 26.58 15.70 34.62 4.81 24.12

Authors 7.8544 26.865 15.824 35.170 4.8172 24.403

0.30 FSDTb 7.42 33.18 13.16 35.42 4.38 22.52

Authors 7.4313 33.501 13.247 35.801 4.3921 22.758

0.50 FSDTb 7.84 51.25 11.72 51.94 3.78 19.42

Authors 7.8482 51.785 11.778 52.504 3.7900 19.567

(b) Annular plates with free inner and hard simply supported outer edges (S±F)

0.10 0.10 FSDTb 4.81 28.04 13.50 43.83 24.26 61.94

Authors 4.8181 28.104 13.524 44.016 24.316 62.271

0.30 FSDTb 4.63 34.92 12.19 41.45 23.07 57.18

Authors 4.6329 35.002 12.208 41.582 23.116 57.445

0.50 FSDTb 5.03 59.53 10.90 62.28 20.92 70.09

Authors 5.0352 59.721 10.916 62.503 20.966 70.510

0.30 0.10 FSDTb 4.54 21.67 11.50 30.05 19.04 39.93

Authors 4.5572 21.933 11.602 30.565 19.279 40.757

0.30 FSDTb 4.39 26.08 10.09 28.93 18.13 36.61

Authors 4.4007 26.387 10.162 29.307 18.340 37.184

0.50 FSDTb 4.72 39.22 8.94 40.24 16.11 43.25

Authors 4.7367 39.798 8.9904 40.836 16.256 42.972

(c) Annular plates with free inner and clamped outer edges (C±F)

0.10 0.10 FSDTb 9.90 36.33 20.04 52.53 31.86 71.35

Authors 9.9490 36.603 20.171 53.015 32.095 72.083

0.30 FSDTb 11.12 46.25 18.12 51.74 30.08 66.24

Authors 11.180 46.641 18.220 52.173 30.266 66.828

0.50 FSDTb 17.02 77.24 20.48 79.41 29.02 85.76

Authors 17.142 78.150 20.614 80.339 29.197 86.748

0.30 0.10 FSDTb 8.37 24.70 15.01 32.23 22.02 41.64

Authors 8.4771 25.203 15.274 32.982 22.461 42.734

0.30 FSDTb 9.39 29.08 13.64 31.32 20.96 38.10

Authors 9.5132 29.701 13.835 31.978 21.348 38.905

0.50 FSDTb 13.55 40.90 15.42 41.71 20.21 44.29

Authors 13.773 41.952 15.669 41.952 20.540 45.355

a The ®rst number denotes the number of nodal diameters, whereas the second number indicates the order of the frequencies.
b Irie et al. (1982).
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Table 1 shows the e�ects of di�erent boundary conditions (at the inner and outer edges) on the rate of
convergence of the frequency parameters. Annular plates with both outer and inner edges free (F±F), hard
simply supported outer edge and free inner edge (S±F), and clamped outer edge and free inner edge (C±F)
are considered. The number of terms assumed in each displacement component is stepped from 5� 4 to
9� 4 to illustrate the improvement in the frequency convergence. It is observed that as the number of terms
of N is increased from 4 to 5, the rate of convergence does not increase. However when M increases, the
solution converges to a better upper-bound value. Reasonably accurate frequency solutions for the ®rst
eight modes of vibration are achieved when 8� 4 terms are used in the displacement functions.

In Table 2, a comparison study of the results for the annular plates with F±F, S±F, and C±F boundary
conditions with the Mindlin solutions of Irie et al. (1982) is carried out. From this comparison, it is found
that for small thickness ratio, h=ro � 0:10, the three-dimensional frequency solutions and the Mindlin plate
approximations are in good agreement for annular plates with a free or hard simply supported outer edge.

Fig. 2. Deformed mode shapes and frequency parameters of an annular plate with both the inner and outer edges free

(ri=ro � 0:30; h=ro � 0:20�:

Table 3

Comparison of frequency parameters with ®nite element solutions for annular plates subjected to S±F and C±F boundary conditions

(ri=ro � 0:30 and h=ro � 0:20)

Boundary condi-

tion

Source of results Mode sequence number

1 2 3 4 5 6 7 8

S±F FE methoda 4.6848 11.881 ± ± 21.133 ± 30.804 31.364

Authors 4.5402 11.240 12.742 15.905 20.852 27.931 30.709 31.543

C±F FE method 10.440 16.085 25.723 36.174 37.136 39.479 ± ±

Authors 10.448 16.027 25.651 36.221 37.348 39.603 40.810 44.080

a Solutions obtained using eight-node 3-D element of MSCMSC//NASTRANNASTRAN software package with 3000 elements (3960 nodes).
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Fig. 3. Deformed mode shapes and frequency parameters of an annular plate with a soft simply supported outer edge and a free inner

edge (ri=ro � 0:30; h=ro � 0:20).

Fig. 4. Deformed mode shapes and frequency parameters of an annular plate with a hard simply supported outer edge and a free inner

edge (ri=ro � 0:30; h=ro � 0:20).
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Fig. 5. Deformed mode shapes and frequency parameters of an annular plate with a clamped outer edge and a free inner edge

(ri=ro � 0:30; h=ro � 0:20).

Fig. 6. Deformed mode shapes and frequency parameters of annular plates with F±C, S±S and C±C boundary conditions

(ri=ro � 0:30; h=ro � 0:20).
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However, the discrepancy increases for annular plates with a clamped outer edge and particularly at higher
relative thickness ratios, h=ro � 0:30 and 0.50. This is attributed to the fact that the ®rst-order Mindlin
theory assumes linear variations across the thickness, which is only valid for plates with moderate thickness
ratios, h=ro. Table 3 shows a comparison study of the present results with the converged ®nite element
solutions obtained using the MSCMSC//NASTRANNASTRAN software package. A good agreement is achieved between the
present results and the ®nite element solutions.

The three-dimensional vibration mode shapes of the annular plates are shown in Figs. 2±5 for free, soft
simply supported, hard simply supported and clamped outer edges. Displacement components in the radial
�U1�, circumferential �U2� and thickness �U3� directions are presented together with the three-dimensional
mode shape plots. It is observed that for the antisymmetric thickness modes, the index �n correlates to the
number of nodal diameters appearing in the out-of-plane �U3� vibration modes. The second mode of the
free annular plate is noted as an axisymmetric mode, and the ®fth mode is a symmetric thickness mode with
distinct stretching and contracting motions at the inner cutout. The fundamental modes for both the hard
and soft simple supports have an identical frequency value �k � 4:5401� and mode shape. An identical
frequency value is also observed for the axisymmetry in-plane vibration mode �k � 27:931�.

The mode shapes of thick annular plates with F±C, S±S and C±C boundary conditions are depicted in Fig.
6. The plate thickness ratio h=ro and cut-out ratio ri=ro are ®xed at 0.20 and 0.30 for the purposed of generating
these plots. Annular plates with free outer and clamped inner boundaries, comparatively have the lowest
vibration frequencies. The fundamental mode, for this case, has a distinct nodal diameter. On the other hand,
for both the hard simply supported and fully clamped annular plates, the fundamental modes are axisym-
metric out-of-plane modes. It is also observed that the vibration spectrum of the hard, simply supported
annular plate appears to possess the most number of thickness symmetric in-plane vibration modes.

4. Conclusions

Three-dimensional elasticity solutions for free vibrations of annular plates with various combinations of
inner and outer boundary conditions were presented. A systematic formulation of the integral expressions
for strain and kinetic energies in a cylindrical polar coordinate system was detailed. The linear small-strain
three-dimensional elasticity theory adopted in this derivation allows computation of the full vibration
spectrum for the plates. Following the Ritz procedure and with the use of a set of uniquely constructed
orthogonal polynomials as the admissible functions, a linear eigenvalue equation system was obtained. This
was used to determine the vibration frequencies and mode shapes of the plates. In the admissible functions,
the orthogonality inherent in the polynomial series results in better computational e�ciency. A monotonic
convergence for this model was ensured.

After the validation of the present results with the available analytical solutions and also the ®nite el-
ement solutions that obtained using the MSCMSC //NASTRANNASTRAN software package for some problems in the liter-
ature, vibration behaviours of annular plates with various thickness ratios and di�erent combinations of
inner and outer boundary conditions were investigated. Vivid graphical representations of the vibration
modes were manifested in shaded contour plots and three-dimensional deformed mesh geometry. The
three-dimensional mode shapes encompass ¯exural, thickness twist and thickness shear motions, and in
particular the twist and shear modes which cannot be predicted by the two-dimensional plate theories.
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